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Abstract

Electron assisted neutron exchange process in solid state environment is investigated. It is shown

that if a metal is irradiated with free electrons then the e+ A1

Z X+ A2

Z X → e′+ A1−1
Z X+ A2+1

Z X+∆

electron assisted neutron exchange process has measurable probability even in the case of slow

electrons of energy much less than the reaction energy ∆. The transition probability per unit

time, the cross section of the process and the yield in an irradiated sample are determined in the

Weisskopf and long wavelength approximations and in the single particle shell model. Numerical

data for the e+ A1

28 Ni+ A2

28 Ni → e′+ A1+1
28 Ni+ A2−1

28 Ni + ∆ and the e+ A1

46 Pd+ A2

46 Pd → e′+

A1+1
46 Pd+ A2−1

46 Pd+∆ electron assisted neutron exchange reactions are also presented.
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I. INTRODUCTION

In the last two decades extraordinary observations were made in low energy accelerator

physics. Namely the so called anomalous screening effect was observed investigating as-

trophysical factors of nuclear reactions of low atomic numbers mostly in deuterated metal

targets [1].

Motivated by these observations we have searched physical processes that may effect

nuclear reactions in solid state environment. We theoretically found [2] that the leading

channel of the p+ d→ 3He reaction in solid environment is the so called solid state internal

conversion process, an adapted version of ordinary internal conversion process [3]. It was

shown [2] that if the reaction p + d → 3He takes place in solid material the nuclear energy

is taken away by an electron of the environment instead of the emission of a γ photon.

These observations raise the question of the possibility of further modification of nu-

clear processes due to solid state environment. In this paper the electron assisted neutron

exchange process is discussed in solid state environment.

Let us consider the following general nuclear reaction

A1

Z1
X + A2

Z2
Y → A1−1

Z1
X + A2+1

Z2
Y +∆, (1)

which is called neutron exchange reaction further on. Here ∆ is the energy of the re-

action, i.e. the difference between the rest energies of the initial
(
A1

Z1
X +A2

Z2
Y
)
and final

(
A1−1
Z1

X + A2+1
Z2

Y
)
states. In (1) the A1

Z1
X nucleus loses a neutron which is taken up by the

A2

Z2
Y nucleus. The process is energetically forbidden if ∆ < 0. If the relative energy of the

two initial nuclei is high enough to bring them within or near to the range of the nuclear force

process (1) usually takes place spontaneously. It is also a process of type (1) if Z1 = Z2 = Z,

i.e. the process

A1

Z X + A2

Z X → A1−1
Z X + A2+1

Z X +∆ (2)

which is considered further on. One possible realization of process (2) is if the beam consists

of particles A1

Z X and particles A2

Z X are targets.

However, if the energy of the beam is less than the neutron separation energy then the

Coulomb interaction between projectile and target nuclei creates a virtual neutron which is

captured by the other nucleus. So in this case the process can be considered as a second

order process from the point of view of perturbation calculation.
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The cross section of process (2) can be derived applying the Coulomb solution ϕ(r), which

is the wave function of a free particle of charge number Z in a repulsive Coulomb field of

charge number Z [4], in the description of relative motion of projectile and target. Since

ϕ(r) ∼ e−πη/2Γ(1 + iη), the cross section of the process is proportional to

∣∣e−πη/2Γ(1 + iη)
∣∣2 = 2πη (E)

exp [2πη (E)]− 1
= FC(E). (3)

Here Γ is the Gamma function and η is the Sommerfeld parameter which reads as

η (E) = Z2αf

√(
A1A2

A1 + A2

)
m0c2

2E
(4)

in the case of colliding particles of charge numbers Z1 = Z2 = Z and rest masses m1 =

A1m0 and m2 = A2m0. E is the kinetic energy in the center of mass coordinate system,

m0c
2 = 931.494 MeV is the atomic energy unit and αf is the fine structure constant. Thus

it is a fact that the rate of the nuclear reaction (2) becomes very small at low energies as a

consequence of FC(E) being small.

The electron assisted version of process (2) is

e + A1

Z X + A2

Z X → e′ + A1−1
Z X + A2+1

Z X +∆ (5)

where e and e′ denote electron. It is also a second order process in which the electron

Coulomb interacts with the A1

Z X nucleus, the intermediate, virtual neutron and the A1−1
Z X

nucleus are created due to this interaction and the intermediate, virtual neutron is captured

due to the strong interaction by the nucleus A2

Z X forming the nucleus A2+1
Z X in this manner.

The physical background of the virtual neutron stripping due to the Coulomb interaction

is worth mentioning. The attractive Coulomb interaction acts between the Z protons and

the electron. The neutrons do not feel Coulomb interaction. So one can say that in fact the

nucleus A1−1
Z X is stripped of the neutron due to the Coulomb attraction.

When describing the effect of the Coulomb interaction between the nucleus of charge

number Z and a slow electron one can also use Coulomb function and, consequently, the

cross section of process (5) to be investigated is proportional to

Fe(E) =
2πηe (E)

exp [2πηe (E)]− 1
(6)

but with

ηe = −Zαf

√
mec2

2E
. (7)
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Hereme is the rest mass of the electron. In the case of low (less than 0.1MeV ) kinetic energy

of the electron Fe(E) reads approximately as Fe(E) = |2πηe (E)|. If we compare the cross

sections of processes (5) and (2) their ratio is proportional to Fe(E)/FC(E) ≃ 1/FC(E) ≫ 1.

Therefore for small E process (5) is preferred to process (2) since 1/FC(E) becomes extremely

large with decreasing E. The cross section of the electron assisted neutron exchange process

has a further increase due to the large number density ≃ 1/d3 of the two types of nuclei

in the solid to which the cross section is also proportional as it will be seen. Here d is the

lattice parameter of order of magnitude of 10−8 cm.

We investigate systems in which process (5) can take place. The solid is a metal (e.g. Ni

or Pd) which contains the nuclei A1

Z X and A2

Z X and it is irradiated with slow, free electrons

(of nonrelativistic energy). The nuclei A1

Z X (or A2

Z X) interact with the ingoing free electrons

via Coulomb interaction.

II. ELECTRON ASSISTED NEUTRON EXCHANGE PROCESS

Let us take a solid (in our case a metal) which is irradiated by a monoenergetic beam

of slow, free electrons. The corresponding sub-system Hamiltonians are Hsolid and He. It is

supposed that their eigenvalue problems are solved, and the complete set of the eigenvectors

of the two independent systems are known. The interaction between them is the Coulomb

interaction of potential V Cb (x) and the other interaction that is taken into account between

the nucleons of the solid is the strong interaction potential V St (x). In the second order

process investigated an electron takes part in a Coulomb scattering with an atomic nucleus

of the solid. In the intermediate state a virtual free neutron n is created which is captured

due to the strong interaction with some other nucleus of the solid. The reaction energy ∆

is shared between the quasi-free final electron and the two final nuclei which take part in

the process. Since the aim of this paper is to show the fundamentals of the main effect, the

simplest description is chosen.

The electron of charge −e and the nucleus A1

Z X of charge Ze take part in Coulomb-

interaction. We use a screened Coulomb potential of the form

V Cb (x) = −e
2Z

2π2

∫
1

q2 + λ2
exp (iq · x) dq (8)

with screening parameter λ and coupling strength e2 = αf~c. For the strong interaction the
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interaction potential

V St (x) = −f exp (−s |x|)|x| (9)

is applied, where the strong coupling strength f = 0.08~c [5] and 1/s is the range of the

strong interaction. (~ is the reduced Planck constant, c is the velocity of light and e is the

elementary charge.)

According to the standard perturbation theory of quantum mechanics the transition

probability per unit time (Wfi) of this second order process can be written as

Wfi =
2π

~

∑

f

|Tfi|2 δ(Ef − Ei −∆) (10)

with

Tfi =
∑

µ

V St
fµV

Cb
µi

∆Eµi
. (11)

Here V Cb
µi is the matrix element of the Coulomb potential between the initial and interme-

diate states and V St
fµ is the matrix element of the potential of the strong interaction between

intermediate and final states, furthermore

∆Eµi = Eµ − Ei −∆iµ. (12)

Ei, Eµ and Ef are the kinetic energies in the initial, intermediate and final states, respec-

tively, ∆ is the reaction energy, and ∆iµ is the difference between the rest energies of the

initial
(
A1

Z X
)
and intermediate

(
A1−1
Z X and n

)
states.

∆ = ∆− +∆+, ∆iµ = ∆− −∆n (13)

with

∆− = ∆A1
−∆A1−1 and ∆+ = ∆A2

−∆A2+1. (14)

∆A1
, ∆A1−1, ∆A2

, ∆A2+1 and ∆n are the energy excesses of the neutral atoms of mass

numbers A1, A1−1, A2, A2+1 and the neutron, respectively. [6]. The sum of initial kinetic

energies (Ei) is neglected in the energy Dirac-delta δ(Ef − Ei −∆) and ∆Eµi further on.

Particle e is an electron, particle 1 is initially the nucleus A1

Z X and finally A1−1
Z X , particle

2 is initially the nucleus A2

Z X and finally A2+1
Z X .

Ef = Efe (kfe) + Ef1 (k1) + Ef2 (k2) , (15)
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Eµ = Efe (kfe) + Eµ1 (k1) + En (kn) , (16)

where

Efj (kj) =
~
2k2

j

2mj
(17)

is the kinetic energy, kfj ≡ kj is the wave vector and mj is the rest mass of particle j in the

final state (j = 1, 2).

En (kn) =
~
2k2

n

2mn
(18)

is the kinetic energy, kn is the wave vector and mn is the rest mass of the neutron in the

intermediate state. Eµ1 (k1) is the kinetic energy of the first particle in the intermediate

state, and Eµ1 (k1) = Ef1 (k1). The kinetic energy of the electron in the initial and final

state

Eie =
~
2k2

ie

2me
and Efe =

~
2k2

fe

2me
(19)

with kie and kfe denoting the wave vector of the electron in the initial and final state. The

initial wave vectors ki1 and ki2 of particles 1 and 2 are neglected. The initial, intermediate

and final states are determined in Appendix A., the V Cb
µi , V

St
fµ matrix-elements are calculated

in Appendix B. and the transition probability per unit time is calculated in Appendix C..

Appendix D. is devoted to the approximations, identities and relations which are used in

the calculation of the cross section.

III. CROSS SECTION AND YIELD OF EVENTS OF ELECTRON ASSISTED

NEUTRON EXCHANGE PROCESS

A. Cross section of electron assisted neutron exchange process

The cross section σ of the process can be obtained from the transition probability per

unit time (56) dividing it by the flux ve/V of the incoming electron where ve is the velocity

of the electron.

σ =

∫
c

ve

α2
f~cZ

2
∑l2=m2

l2=−m2
|F2 (k2)|2

π3vc
(
|k1 + k2|2 + λ2

)2
(∆Eµi)

2
kn=k2

(20)

× Fe(Eie)

Fe(Ef1)

〈
|F1 (k2)|2

〉
A2

2rA2
δ(Ef −∆)d3k1d

3k2,
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where vc is the volume of elementary cell in the solid, rA2
is the relative natural abundance

of atoms A2

Z X ,

F1 (k2) =

∫
Φi1 (rn1) e

−ik2
A1

A1−1
·rn1d3rn1, (21)

〈
|F1 (k2)|2

〉
=

1

2l1 + 1

l1=m1∑

l1=−m1

|F1 (k2)|2 (22)

and

F2 (k2) =

∫
Φ∗

f2 (rn2) e
ik2·rn2 × (23)

×
(
−f

exp(−sA2+1
A2

rn2
A2+1
A2

rn2

)
d3rn2.

Here Φi1 and Φf2 are the initial and final bound neutron states. The details of the cross

section calculation (see in Appendix D.) result that the k2 ≃ k0 =
√
2µ12∆/~ substitution

may be used in calculating F1 and F2 in σ, where µ12 = m0 [(A1 − 1) (A2 + 1)] / (A1 + A2).

Evaluating (20) first the Weisskopf approximation is applied, i.e. for the initial and final

bound neutron states we take ΦW (rnj) = φ (rnj)Yljmj
(Ωj) , j = 1, 2 where Yljmj

(Ωj) is

a spherical harmonics and φjW (rnj) =
√

3/R3
j , j = 1, 2 if |rnj | ≤ Rj and φjW (rnj) = 0

for |rnj | > Rj , where Rj = r0A
1/3
j is the radius of a nucleus of nucleon number Aj with

r0 = 1.2 × 10−13 cm. We apply the A1 ≃ A2 ≃ A1 − 1 ≃ A2 + 1 = A approximation

further on. Calculating F1 (k0) and F2 (k0) the long wavelength approximations (LWA)

(exp (−ik0 · rn1) = 1 and exp (ik0 · rn2) = 1) are also used with s = 1/r0 that result approx-

imately

〈
|F1 (k0)|2

〉 l2=m2∑

l2=−m2

|F2 (k0)|2 = 16π2r40f
2 (2l2 + 1) . (24)

Using the results of Appendix D., the Ef1 = ∆/2 relation and if Ee < 0.1 MeV (i.e. if

Fe(Eie) = |2πηe (Eie)| = 2πZαf

√
mec2/2Eie) then the cross section in the Weisskopf-LWA

approximation reads as

σW =
CW0 (2l2 + 1)
[
1 + 2(∆n−∆

−
)

A∆

]2
rA2

Fe(∆/2)

A3/2Z2

∆3/2Eie

(25)

with CW0 = 29π3α3
f (0.08)

2 aBr0
(
r0
d

)3
(m0c

2)
3/2
mec

2. Here aB is the Bohr-radius, the rela-

tion c/ve =
√
mec2/ (2Eie) with Eie the kinetic energy of the ingoing electrons is also applied

and d = 3.52× 10−8 cm (Ni lattice) and d = 3.89× 10−8 cm (Pd lattice). Fe(∆/2) is deter-

mined by (6) and (7). The subscript W refers to the Weisskopf-LWA approximation and in
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(25) the quantities ∆ and Eie have to be substituted in MeV units. CW0 (Ni) = 1.4×10−14

MeV 5/2b and CW0 (Pd) = 1.1× 10−14 MeV 5/2b.

We have calculated
∑l2=m2

l2=−m2
|F2 (k0)|2,

〈
|F1 (k0)|2

〉
and the cross section in the single

particle shell model with isotropic harmonic oscillator potential and without the long wave-

length approximation (see Appendix E.). We introduce the ratio

η =

〈
|F1 (k0)|2

〉
Sh

∑l2=m2

l2=−m2
|F2 (k0)|2Sh〈

|F1 (k0)|2
〉
W

∑l2=m2

l2=−m2
|F2 (k0)|2W

. (26)

(The subscript Sh refers to the shell model.) With the aid of η ≡ ηl1,n1,l2,n2
(A1, A2) given

by (74) (see Appendix E.) the cross section σSh calculated in the shell model can be written

as

σSh = ηl1,n1,l2,n2
(A1, A2) σW . (27)

B. Yield of events of electron assisted neutron exchange process

The yield dN/dt of events of electron assisted neutron exchange process A1, A2 → A1 −
1, A2 + 1 can be written as

dN

dt
= NtNniσΦ, (28)

where σ = {σW or σSh}, Φ is the flux of electrons, Nt is the number of target particles, i.e.

the number NA1
of irradiated atoms of mass number A1 in the metal. The contribution of

Nni neutrons in each nucleus A1

Z X is also taken into account. Nni is the number of neutrons

in the uppermost energy level of the initial nucleus A1

Z X . If F and D are the irradiated

surface and the width of the sample, respectively, then the number of elementary cells Nc in

the sample is Nc = FD/vc = 4FD/d3 in the case of Ni and Pd, and the number of atoms

in the elementary cell is 2rA1
with rA1

the relative natural abundance of atoms A1

Z X thus

the number Nt of target atoms of mass number A1 in the process is

Nt =
8

d3
rA1

FD. (29)

The wave numbers and energies of the two outgoing heavy particles are approximately

k1 = −k2,

E1 =
A2 + 1

A1 + A2
∆ and E2 =

A1 − 1

A1 + A2
∆. (30)
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A 58 60 61 62 64

∆− −4.147 −3.317 0.251 −2.526 −1.587

∆+ 0.928 −0.251 2.526 −1.234 −1.973

rA 0.68077 0.26223 0.0114 0.03634 0.00926

TABLE I: Numerical data of the e+ A1

28 Ni+ A2

28 Ni → e′ + A1−1
28 Ni+ A2+1

28 Ni+∆ reaction. The

reaction is energetically allowed if ∆ = ∆−(A1) + ∆+(A2) > 0 holds. A is the mass number, rA

is the relative natural abundance, ∆−(A) = ∆A − ∆A−1 and ∆+(A) = ∆A −∆A+1 are given in

MeV units.

A 102 104 105 106 108 110

∆− −2.497 −1.912 0.978 −1.491 −1.149 −0.747

∆+ −0.446 −0.978 1.491 −1.533 −1.918 −2.320

rA 0.0102 0.1114 0.2233 0.2733 0.2646 0.1172

TABLE II: Numerical data of the e+ A1

46 Pd+A2

46 Pd → e′ + A1−1
46 Pd+A2+1

46 Pd+∆ reaction. The

reaction is energetically allowed if ∆ = ∆−(A1) + ∆+(A2) > 0 holds. A is the mass number, rA

is the relative natural abundance, ∆−(A) = ∆A − ∆A−1 and ∆+(A) = ∆A −∆A+1 are given in

MeV units.

IV. NUMERICAL DATA OF ELECTRON ASSISTED NEUTRON EXCHANGE

PROCESSES IN Ni AND Pd

As a first example we take Ni as target material. In this case the possible processes are

e+ A1

28Ni+
A2

28Ni→ e′ + A1−1
28 Ni+ A2+1

28 Ni+∆. (31)

Tables I. and III. contain the relevant data for reaction (31). Describing neutrons in the

uppermost energy level of A
28Ni isotopes we used 1p shell model states in the cases of A =

58− 60 and 0f shell model states in the cases of A = 61− 64.

Another interesting target material is Pd in which the electron assisted neutron exchange

processes are the

e+ A1

46 Pd+
A2

46 Pd→ e′ + A1−1
46 Pd+ A2+1

46 Pd+∆ (32)
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A1 → A1 − 1 A2 → A2 + 1 ∆(MeV) η

61 → 60 58 → 59 1.179 7.02 × 10−3

61 → 60 61 → 62 2.777 2.42 × 10−8

64 → 63 61 → 62 0.939 2.08 × 10−4

TABLE III: The values of the quantities η and ∆ = ∆−(A1) + ∆+(A2) > 0, the later in MeV

units, of the e+ A1

28 Ni+ A2

28 Ni → e′+ A1−1
28 Ni+ A2+1

28 Ni+∆ reaction. The ∆−(A1) and ∆+(A2)

values can be found in Table I. For the definition of η see (26) and (74).

A1 → A1 − 1 A2 → A2 + 1 ∆(MeV) η

105 → 104 102 → 103 0.532 1.84 × 10−4

105 → 104 105 → 106 2.469 8.88 × 10−11

108 → 107 105 → 106 0.342 2.82 × 10−3

TABLE IV: The values of the quantities η and ∆ = ∆−(A1) + ∆+(A2) > 0, the later in MeV

units, of the e+ A1

46 Pd+A2

46 Pd → e′ + A1−1
46 Pd+A2+1

46 Pd+∆ reaction. The ∆−(A1) and ∆+(A2)

values can be found in Table II. For the definition of η see (26) and (74).

reactions. The relevant data can be found in Tables II. and IV.. Describing neutrons in

the uppermost energy level of A
46Pd isotopes we used 0g shell model states in the cases of

A = 102 − 104 and 1d shell model states in the cases of A = 105 − 108. The nuclear

data to the Tables are taken from [6]. One can see from Tables III. and IV. that in both

cases three possible pairs of isotopes exist which are energetically allowed (for which ∆ > 0)

and their rates differ in the factor (2l2 + 1)Nniηl1,n1,l2,n2
(A1, A2) rA1

rA2
∆−3/2 only. The η ≡

ηl1,n1,l2,n2
(A1, A2) values of Ni and Pd can also be found in Tables III. and IV., respectively.

The results of numerical investigation of (2l2 + 1)Nniηl1,n1,l2,n2
(A1, A2) rA1

rA2
∆−3/2 shows

that the 61 → 60, 58 → 59 and the 108 → 107, 105 → 106 reactions are the dominant among

the processes in Ni and Pd, respectively.
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V. SUMMARY

The electron assisted neutron exchange process is discussed. The transition probability

per unit time and the cross section of the process are determined in those cases when the

electron takes off negligible energy. The electron assisted neutron exchange processes are

investigated numerically in Ni and Pd. In the case of Ni it is found that the

e+ 61
28Ni+

58
28Ni → e′ + 60

28Ni+
59
28Ni+ 1.179 MeV (33)

process of σSh = 0.088/Eie µb with Eie in MeV is leading. In this case the 60
28Ni and the

59
28Ni isotopes take away 0.585 MeV and 0.594 MeV , respectively. In the case of Pd the

e+ 108
46 Pd+

105
46 Pd→ e′ + 107

46 Pd+
106
46 Pd+ 0.342 MeV (34)

reaction of σSh = 0.26/Eie µb with Eie in MeV is found to be the leading one. In this case

the 107
46 Pd and the 106

46 Pd isotopes take away 0.170 MeV and 0.172 MeV , respectively.

There are many other materials which may be suitable for hosting electron assisted neu-

tron exchange process some of which we list in the following. We deal with period 4 of

transition metals. (The metal targets are advantageous from experimental point of view

since in the case of metals it is easy to avoid the charging of the sample.) The Cr, Fe

and V have body centered cubic crystal lattice. In the case of V there is one and in the

case of Cr and Fe there are two energetically allowed electron assisted neutron exchange

processes. T i and Zn have closepacked hexagonal crystal structure. In the case of T i there

are five and in the case of Zn there are three energetically allowed electron assisted neutron

exchange processes. Since the natural abundance of 45
25Sc,

55
25Mn and 59

27Co equals unity in the

case of these materials there is no chance of the electron assisted neutron exchange process.

Although Cu has two natural isotopes, their electron assisted neutron exchange processes

are energetically forbidden.
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VI. APPENDIX

A. Initial, intermediate and final states of the process

Let Ψi, Ψµ and Ψf denote the space dependent parts of initial, intermediate and final

states, respectively. The initial state has the form

Ψi(xe,x1,xn1,x2) = ψie (xe)ψi1n(x1,xn1)ψi2(x2), (35)

where

ψie (xe) = V −1/2e(ikie·xe) and ψi2(x2) = V −1/2e(iki2·x2) (36)

are the initial state of the electron and the nucleus A2

Z X , and ψi1n(x1,xn1) is the initial state

of the neutron and the initial A1 − 1 nucleon of the nucleus A1

Z X . xe, x1,xn1 and x2 are the

coordinates of the electron, the center of mass of the initial A1−1 nucleon, the neutron and

the nucleus A2

Z X , respectively. kie and ki2 are the initial wave vectors of the electron and

the nucleus A2

Z X and V is the volume of normalization. The initial state ψi1n(x1,xn1) of the

neutron and the initial A1 − 1 nucleon may be given in the variables R1, rn1

ψi1n(R1, rn1) = V −1/2 exp(iki1 ·R1)Φi1 (rn1) (37)

where R1 is the center of mass coordinate of the nucleus A1

Z X and rn1 is the relative coor-

dinate of one of its neutrons. R1 and rn1are determined by the usual xn1 = R1 + rn1 and

R1 = [(A1 − 1)x1 + xn1] /A1 relations where xn1 and x1 are the coordinates of the neutron

and of the center of mass of the initial A1 − 1 nucleon, respectively. The inverse formula for

x1 is x1 = R1 − rn1/ (A1 − 1). In (37) the Φi1 (rn1) is the wave function of the neutron in

the initial bound state of nucleus A1

Z X , ki1is the initial wave vector of nucleus A1

Z X .

The intermediate state has the form

Ψµ(xe,x1,xn1,x2) = ψfe (xe)ψµ1n(x1,xn1)ψi2(x2), (38)

where

ψfe (xe) = V −1/2e(ikfe·xe) (39)

with kfe the wave vector of the electron in the final state and ψi2(x2) is given in (36).

The state ψµ1n(x1,xn1) is the product of two plane waves ψf1(x1) = V −1/2e(ik1·x1) and

ψn (xn1) = V −1/2eikn·xn1, which are the final state of the nucleus A1−1
Z1

X and the state of the

12



free, intermediate neutron. Thus ψµ1n(x1,xn1) = V −1eik1·x1eikn·xn1 and it has the form in

the coordinates R1, rn1

ψµ1n(R1, rn1) = V −1ei(k1+kn)·R1e
i
(

kn−
k1

A1−1

)

rn1 , (40)

where k1 and kn are the wave vectors of the nucleus A1−1
Z X and the neutron, respectively.

The intermediate state may have an other form

Ψµ(xe,x1,xn1,x2) = ψfe (xe)ψf1(x1)ψµ2n(xn1,x2), (41)

where

ψµ2n(xn1,x2) = ψn (xn1)ψi2(x2) = V −1eikn·xn1eiki2·x2 (42)

which can be written in the coordinates rn2 = xn1 −R2 and R2 = (A2x2 + xn1) / (A2 + 1)

as

ψµ2n(R2, rn2) =
1

V
ei(ki2+kn)·R2e

i
(

kn−
ki2
A2

)

rn2 , (43)

where R2 is the center of mass coordinate of the nucleus A2+1
Z X and rn2 is the relative

coordinate of the neutron in it. In these new variables x2 = R2 − rn2/A2 and xn1 −
x2 = (A2 + 1) rn2/A2 which is used in the argument of V St (given by (9)) in calculating

V St
fµ . Evaluating the matrix elements V Cb

µi and V St
fµ the forms (40) and (43) of ψµ are used,

respectively, and
∑

µ → V
(2π)3

d3kn in (11).

The final state has the form

Ψf (xe,x1,xn1,x2) = ψfe (xe)ψf1(x1)ψf2n(xn1,x2), (44)

where ψf2n(xn1,x2) is given in the variables R2, rn2 as

ψf2n(R2, rn2) = V −1/2 exp(ik2 ·R2)Φf2 (rn2) , (45)

and Φf2 (rn2) is the bound state of the neutron in the nucleus A2+1
Z X .

B. Evaluation of matrix elements V Cb
µi and V St

fµ

The argument of the Coulomb potential V Cb is xe − x1 therefore the integration with

respect to the components of x2 may be carried out and
∫
|ψi2(x2)|2 d3x2 = 1. The remainder

is

V Cb
µi =

∫
ψ∗

fe (xe)ψ
∗

µ1n(x1,xn1)V
Cb (xe − x1) (46)

×ψie (xe)ψi1n(x1,xn1)d
3xed

3x1d
3xn1.
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Making the x1,xn1 → R1, rn1 change in the variables, substituting the forms (37) and (40) of

ψi1n and ψµ1n, and neglecting ki1, the integrations over the components of xe and R1 result

V −1 (2π)3 δ (q+ kie − kfe) and V
−3/2 (2π)3 δ (q− k1 − kn), respectively and the integration

over the components of rn1 produces F1 (kn) where

F1 (kn) =

∫
Φi1 (rn1) e

−i
(

kn−
k1+q

A1−1

)

·rn1d3rn1. (47)

Using the δ (q+ kie − kfe) in carrying out the integration over the components of q in V Cb
µi

one gets

V Cb
µi = − πe2Z

2π2 |kfe − kie|2 + λ2
F̃1 (kn)

(2π)6

V 5/2
× (48)

×
√
GSδ (kie − kfe − k1 − kn)

and

F̃1 (kn) =

∫
Φi1 (rn1) e

−i
(

kn−
k1+kfe−kie

A1−1

)

·rn1d3rn1. (49)

For particles e and 1 (ingoing electron of charge −e and initial nucleus A1

Z X of charge Ze)

taking part in Coulomb interaction we have used plane waves therefore the matrix element

must be corrected with the so called Sommerfeld factor [7]
√
GS where

GS =
Fe(Eie)

Fe(Ef1)
. (50)

Now we deal with V St
fµ . The strong interaction works between the neutron and the

nucleons of the nucleus A2

Z X therefore the argument of V St is xn1 − x2. The integrations

with respect to the components of xe and x1 result
∫
|ψef (xe)|2 d3xe =

∫
|ψf1(x1)|2 d3x1 = 1.

The remainder is

V St
fµ =

∫
ψ∗

f2nV
St (xn1 − x2)ψµ2nd

3x2d
3xn1. (51)

Similarly to the above, making the xn1,x2 → R2, rn2 change in the variables, substituting

the forms (43) and (45) of ψµ2n and ψ∗

f2n and neglecting ki2, the integrations over the

components of R2 result V −3/2 (2π)3 δ (kn − k2) and the integrations with respect to the

components of rn2 produces F2 (kn) with

F2 (kn) =

∫
Φ∗

f2 (rn2) e
ikn·rn2 × (52)

×
(
−f

exp(−sA2+1
A2

rn2
A2+1
A2

rn2

)
d3rn2,
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where rn2 = |rn2|. Taking into account that the neutron interacts with each nucleon of the

final nucleus of nucleon number A2

V St
fµ =

(2π)3

V 3/2
A2F2 (kn) δ (kn − k2) . (53)

C. Transition probability per unit time of electron assisted neutron exchange

process

Substituting the obtained forms of V Cb
µi and V St

fµ (formulae (48) and (53)) into (11) and

using the correspondence
∑

µ → V
(2π)3

d3kn and the δ (kn − k2) in the integration over the

components of kn one gets

Tfi = −
e2ZA2F̃1 (k2)F2 (k2)

√
Fe(Eie)
Fe(Ef1)

2π2 |kfe − kie|2 + λ2
× (54)

×(2π)6

V 3

δ (k1 + k2 + kfe − kie)

(∆Eµi)kn=k2

,

where

F̃1 (k2) =

∫
Φi1 (rn1) e

−i
(

k2−
k1+kfe−kie

A1−1

)

·rn1d3rn1 (55)

and F2 (k2) is determined by (23). Here Φi1 and Φf2 in (23) are the initial and

final bound neutron states. Substituting the above into (10), using the identities

[δ (k1 + k2 + kfe − kie)]
2 = δ (k1 + k2 + kfe − kie) δ (0) and (2π)3 δ (0) = V , the

∑
f →

∑
m2

∫ [
V/ (2π)3

]3
d3k1d

3k2d
3kfe correspondence, averaging over the quantum number

m1 and integrating over the components of kfe (which gives kfe = −k1 − k2 + kie) one

obtains

Wfi =

∫
α2
f~c

2Z2
∑l2=m2

l2=−m2
|F2 (k2)|2

π3vcV
(
|k1 + k2|2 + λ2

)2
(∆Eµi)

2
kn=k2

(56)

×
〈
|F1 (k2)|2

〉 Fe(Eie)

Fe(Ef1)
A2

2rA2
δ(Ef −∆)d3k1d

3k2,

where A1, A2 are the initial atomic masses, l1, m1 and l2, m2 are the orbit and its projection

quantum numbers of the neutron in its initial and final state. For F1 (k2),
〈
|F1 (k2)|2

〉
and

F2 (k2) see (21), (22) and (23). Taking into account the effect of the number of atoms of

atomic number A2 in the solid target the calculation is similar to the calculation of e.g. the

coherent neutron scattering [8] and the |Tfi|2 must be multiplied by NL which is the number
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of atomic sites in the crystal and by rA2
which is the relative natural abundance of atoms

A2

Z X . We have used NL/V = 2/vc with vc the volume of the elementary cell of the fcc lattice

in which there are two lattice sites in the cases of Ni and Pd investigated.

D. Approximations, identities and relations in calculation of cross section

Now we deal with the energy denominator (∆Eµi) in (56) and (20) [see (12)− (19)]. The

shielding parameter λ is determined by the innermost electronic shell of the atom A1

Z X and

it can be determined as

λ =
Z

aB
, (57)

where aB = 0.53× 10−8 cm is the Bohr-radius. The integrals in (56) and (20) have account-

able contributions if

|k1 + k2| . λ (58)

and then Efe . ~
2λ2/ (2me) =

1
2
α2
fmec

2Z2 which can be neglected in ∆Eµi and in the energy

Dirac-delta. Thus

∆Eµi =
~
2k2

1

2m1
+

~
2k2

2

2mn
−∆− +∆n (59)

and in the Dirac-delta

Ef =
~
2k2

1

2m1

+
~
2k2

2

2m2

. (60)

In this case k1 = −k2 + δk with |δk| = δk ∼ λ. Using

k1 ≃ k2 ≃ k0 =
√
2µ12∆/~ (61)

(see below) with µ12c
2 = A12m0c

2, where A12 = (A1 − 1) (A2 + 1) / (A1 + A2) is the reduced

nucleon number, one can conclude that the k2 = −k1 relation fails with a very small error

in the cases of events which fulfill condition (58) since k1/k0 ≃ 1, k2/k0 ≃ 1, δk/k0 ∼ λ/k0

and λ/k0 = αfZmec
2/
√
2µ12c2∆ ≪ 1. Consequently, the quantity Ef in the argument of

the energy Dirac-delta can be written approximately as

Ef =

(
~
2

2m1
+

~
2

2m2

)
k2
2 =

~
2c2k2

2

2A12m0c2
. (62)

Furthermore taking A1/ (A1 + 1) ≃ 1

∆Eµi =
~
2c2k2

2

2m0c2
−∆− +∆n. (63)
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We introduce the Q = ~ck2/∆, P = ~c (δk) /∆, εf = Ef/∆ = [Q2/ (2A12m0c
2)]∆

and L = ~cλ/∆ dimensionless quantities. The energy Dirac-delta modifies as δ(Ef −
∆) = δ [εf (Q)− 1] /∆. The relation (57) yields L = ~cZ/ (aB∆) = Zαfmec

2/∆ and

Zαfmec
2/∆ . 1. Now we change d3k1d

3k2 to
(
∆
~c

)6
d3Qd3P in the integration in (20), use

the δ [g (Q)] = δ (Q−Q0) /g
′ (Q0) identity, where Q0 is the root of the equation g (Q) = 0

(k0 = Q0∆/ (~c), see (61)), estimate the integral with respect to the components of P by

∫
∞

0

4πP 2dP

(P 2 + L2)2
=
π2

L
(64)

and apply vc = d3/4 (the volume of unit cell of fcc lattice for Ni and Pd of lattice parameter

d).

E.
〈
|F1 (k0)|2

〉
Sh

and
∑l2=m2

l2=−m2
|F2 (k0)|2Sh in single particle shell-model and without

LWA

Now we calculate the quantities
〈
|F1 (k0)|2

〉
Sh

and
∑l2=m2

l2=−m2
|F2 (k0)|2Sh in the single parti-

cle shell model with isotropic harmonic oscillator potential and without the long wavelength

approximation (see definitions: (21), (22) and (23)). Taking into account the spin-orbit

coupling in the level scheme the emerging neutron states are 0l and 1l shell model states

in the cases of Ni and Pd to be discussed numerically [9]. So the initial and final neutron

states (Φi1,Φf2) have the form

ΦSh (rnj) =
Rnj lj

rnj
Yljmj

(Ωj) (65)

where nj = 0, 1 in the cases of 0l and 1l investigated, respectively, and

R0lj = b
−1/2
j

(
2

Γ(lj + 3/2)

)1/2

̺
lj+1
j exp

(
−1

2
̺2j

)
, (66)

R1lj = b
−1/2
j

(
2lj + 3

Γ(lj + 3/2)

)1/2

̺
lj+1
j × (67)

×
(
1− 2

2lj + 3
̺2j

)
exp

(
−1

2
̺2j

)

with ̺j = rnj/bj where bj =
√

~/ (m0ωj) [9]. Here ωj is the angular frequency of the

oscillator that is determined by ~ω1 = 40A
−1/3
1 MeV and ~ω2 = 40 (A2 + 1)−1/3 MeV [10].
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(The subscript Sh refers to the shell model.) With the aid of these wave functions and for

n1 = 0, 1
〈
|F1 (k0)|2

〉
Sh

= b31
2l1+2

√
π (2l1 + 1)!!

4πI21,n1
(68)

with

I1,0 =

∫
∞

0

̺l1+2jl1(k0b1
A1

A1 − 1
̺)e−

1

2
̺2d̺ (69)

and

I1,1 =

(
l1 +

3

2

)∫
∞

0

̺l1+2

(
1− 2

2l1 + 3
̺2
)
× (70)

×jl1(k0b1
A1

A1 − 1
̺)e−

1

2
̺2d̺.

Here jl1(x) =
√

π
2x
Jl1+1/2(x) denotes spherical Bessel function with Jl1+1/2(x) the Bessel

function of first kind.

Similarly

l2=m2∑

l2=−m2

|F2 (k0)|2Sh = b2f
22

l2+2 (2l2 + 1)√
π (2l2 + 1)!!

× (71)

×4π

(
A2

A2 + 1

)2

I22,n2

with

I2,0 =

∫
∞

0

̺l2+1jl2(k0b2̺)e
−

1

2
̺2−

A2+1

A2

b2
r0

̺
d̺ (72)

and

I2,1 =

(
l2 +

3

2

)∫
∞

0

̺l2+1

(
1− 2

2l2 + 3
̺2
)
× (73)

×jl2(k0b2̺)e
−

1

2
̺2−

A2+1

A2

b2
r0

̺
d̺.

Substituting the results of (68), (71) and (24) into (26) one gets

ηl1,n1,l2,n2
(A1, A2) =

2l1+l2+4

π (2l1 + 1)!! (2l2 + 1)!!
× (74)

×b
3
1b2
r40

(
A2

A2 + 1

)2

I21,n1
I22,n2

.
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